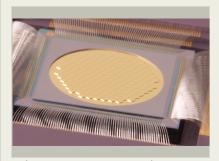
Fabrication Process and Electronics Development for Scaling Segmented MEMS DMs, Phase I


Completed Technology Project (2013 - 2013)

Project Introduction

Microelectromechanical systems (MEMS) technology has the potential to create deformable mirrors (DM) with more than 10^4 actuators that have size, weight, and power specifications that are far lower than conventional piezoelectric and electrostrictive DMs. However, considerable development is necessary to take state-of-the-art DMs today and make them flight-like. This Phase I SBIR proposal addresses two critical areas in MEMS DM development towards the goal of developing flight-like hardware. Namely, Phase I research will further develop Iris AO's proven hybrid MEMS DM technology to: 1) make a critical assembly step in the fabrication process scalable to wafer scales and 2) increase drive electronics resolution to 16 bits while simultaneously reducing power requirements more than three-fold over existing 14-bit resolution electronics. The increased spatial and actuator resolution afforded by the development here will enable picometer resolution DMs required to reach 10^10 contrast levels necessary for direct detection of Earth-sized terrestrial planets.

Primary U.S. Work Locations and Key Partners

Fabrication Process and Electronics Development for Scaling Segmented MEMS DMs

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Fabrication Process and Electronics Development for Scaling Segmented MEMS DMs, Phase I

Completed Technology Project (2013 - 2013)

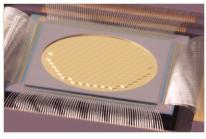
Organizations Performing Work	Role	Туре	Location
Iris AO, Inc.	Lead Organization	Industry	Berkeley, California
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
California	Maryland

Project Transitions

0

May 2013: Project Start



November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140444)

Images

Project Image
Fabrication Process and Electronics
Development for Scaling
Segmented MEMS DMs
(https://techport.nasa.gov/imag
e/129325)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Iris AO, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

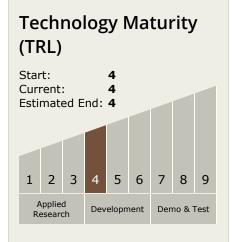
Carlos Torrez

Principal Investigator:

Michael A Helmbrecht

Co-Investigator:

Michael Helmbrecht



Small Business Innovation Research/Small Business Tech Transfer

Fabrication Process and Electronics Development for Scaling Segmented MEMS DMs, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

 TX08 Sensors and Instruments
 □ TX08.2 Observatories
 □ TX08.2.1 Mirror
 Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

